Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes_ Software package SCIATRAN

نویسندگان

  • V. V. Rozanov
  • T. Dinter
  • A. V. Rozanov
  • A. Wolanin
  • A. Bracher
  • J. P. Burrows
چکیده

SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean– atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.unibremen.de. & 2017 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use

The libRadtran software package is a suite of tools for radiative transfer calculations in the Earth’s atmosphere. Its main tool is the uvspec program. It may be used to compute radiances, irradiances and actinic fluxes in the solar and terrestrial part of the spectrum. The design of uvspec allows simple problems to be easily solved using defaults and included data, hence making it suitable for...

متن کامل

Retrieving the availability of light in the ocean utilising spectral signatures of vibrational Raman scattering in hyper-spectral satellite measurements

The availability of light in the ocean is an important parameter for the determination of phytoplankton photosynthesis processes and primary production from satellite data. It is also a useful parameter for other applications, e.g. the determination of heat fluxes. In this study, a method was developed utilising the vibrational Raman scattering (VRS) effect of water molecules to determine the n...

متن کامل

Ring Effect Studies for a Cloudy Atmosphere Using Gome Data

The fact that the depth of solar Fraunhofer lines in scattered light is less than those observed in direct sunlight, was discovered by Shefov [1959] [17] and Grainger and Ring [1962] [6] and is known as the ”Ring Effect” or ”Filling-in”. Several publications analysed this effect and its origins, showing that rotational Raman scattering provides the dominant contribution to the Ring Effect [1, 1...

متن کامل

Some Unsolved Problems in Atmospheric Radiative Transfer: Implication for Climate Research in the Asia–Pacific Region

A number of unsolved problems in atmospheric radiative transfer are presented, including the light scattering and absorption by aerosols, the effect of mountains on radiation fields, and radiative transfer in the atmosphere–ocean system, with a specific application to the Asia–Pacific region. We discuss the issues of two nonspherical and inhomogeneous aerosol types, dust and black carbon, regar...

متن کامل

A 3-dimensional Radiative-transfer Hyperspectral Image Simulator for Algorithm Validation

We are currently developing a high model fidelity HyperSpectral Image simulation software package. It is based on a Direct Simulation Monte Carlo approach for modeling 3D atmospheric radiative transport, as well as spatially inhomogeneous surfaces including surface BRDF effects. “Ground truth” is accurately known through input specification of surface and atmospheric properties, and it is pract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017